On normal derivations of Hilbert–Schmidt type
نویسندگان
چکیده
منابع مشابه
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولLie-type higher derivations on operator algebras
Motivated by the intensive and powerful works concerning additive mappings of operator algebras, we mainly study Lie-type higher derivations on operator algebras in the current work. It is shown that every Lie (triple-)higher derivation on some classical operator algebras is of standard form. The definition of Lie $n$-higher derivations on operator algebras and related pot...
متن کاملNormal Derivations in Norm Ideals
We establish the orthogonality of the range and the kernel of a normal derivation with respect to the unitarily invariant norms associated with norm ideals of operators. Related orthogonality results for certain nonnormal derivations are also given.
متن کاملHardy type derivations on generalised series fields
We consider the valued fieldK := R((Γ)) of generalised series (with real coefficients and monomials in a totally ordered multiplicative group Γ ). We investigate how to endow K with a series derivation, that is a derivation that satisfies some natural properties such as commuting with infinite sums (strong linearity) and (an infinite version of) Leibniz rule. We characterize when such a derivat...
متن کاملlie-type higher derivations on operator algebras
motivated by the intensive and powerful works concerning additive mappings of operator algebras, we mainly study lie-type higher derivations on operator algebras in the current work. it is shown that every lie (triple-)higher derivation on some classical operator algebras is of standard form. the definition of lie $n$-higher derivations on operator algebras and related pote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 1987
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089500006893